
打破瓶颈,让RAG学会思考:中科大、智源等发布推理检索框架BGE-Reasoner
打破瓶颈,让RAG学会思考:中科大、智源等发布推理检索框架BGE-Reasoner人工智能的浪潮正将我们推向一个由 RAG 和 AI Agent 定义的新时代。然而,要让这些智能体真正「智能」,而非仅仅是信息的搬运工,就必须攻克一个横亘在所有顶尖团队面前的核心难题。这个难题,就是推理密集型信息检索(Reasoning-Intensive IR)。
人工智能的浪潮正将我们推向一个由 RAG 和 AI Agent 定义的新时代。然而,要让这些智能体真正「智能」,而非仅仅是信息的搬运工,就必须攻克一个横亘在所有顶尖团队面前的核心难题。这个难题,就是推理密集型信息检索(Reasoning-Intensive IR)。
尽管 LLM 的能力与日俱增,但其在复杂任务上的表现仍受限于静态的内部知识。为从根本上解决这一限制,突破 AI 能力界限,业界研究者们提出了 Agentic Deep Research 系统,在该系统中基于 LLM 的 Agent 通过自主推理、调用搜索引擎和迭代地整合信息来给出全面、有深度且正确性有保障的解决方案。
Macaron(马卡龙)AI 最近挺火的。 8 月 15 日,他们以「世界上第一个 Personal Agent」的称号公开上线了,给扎克伯格想做的 Personal SuperIntelligence 打了个样。
在软件领域,Vibe Coding的核心在于:让开发者摆脱繁琐、低产出的代码编写,把体力活交给 AI,从而专注于更高维度的产品迭代与创意探索——追求的是效率 + 创意的双重突破。
在软件领域,Vibe Coding 的核心在于:让开发者摆脱繁琐、低产出的代码编写,把体力活交给 AI,从而专注于更高维度的产品迭代与创意探索——追求的是 效率 + 创意 的双重突破。
当我看到TinyFish刚刚完成4700万美元A轮融资的消息时,我意识到这不仅是一轮融资,而是一个全新时代的开始——企业级Web Agent时代。我一直在思考AI agent的商业化应用,但TinyFish的方法让我看到了一个更加现实且具有颠覆性的方向:让AI agent不是简单地模拟人类浏览网页,而是以企业级的规模、可靠性和合规性要求来执行复杂的业务工作流程。
2025 是 Agent 元年,十位创业者有八位都在造 Agent。十字路口过去几个月做了大量相关的访谈与评测,发现决定 Agent 能力上限的,不止模型本身,也不止工程和交互的打磨,基础设施也至关重要——Agent Infra。
华为诺亚方舟实验室最近联合香港大学发了一篇针对"Deep Research Agents"(深度研究代理)的系统性综述,在我的印象中,这是他们第二次发布关于Deep Research的综述论文。上一篇里提供了一个结构导向 (Structure-Oriented) 的视角,核心是“分类”。
8月18日,百度文库上线了一款名为 GenFlow2.0 的 Agent 产品。 在 Agent 层出不穷的 2025 年,市场的第一反应很可能是:「又一个而已」。
继通义灵码的 Lingma IDE 之后,阿里在海外推出另一款 Agent Coding 产品。据官方介绍,Qoder (/ˈkoʊdər/) 是一个专为真实软件开发而设计的 Agent Coding 平台(所以谁不真实?)